A Hochschild Homology Euler Characteristic for Circle Actions

نویسنده

  • Ross Geoghegan
چکیده

Abstract. We define an “S -Euler characteristic”, χ̃S1 (X) , of a circle action on a compact manifold or finite complex X . It lies in the first Hochschild homology group HH1(ZG) where G is the fundamental group of X . This χ̃S1 (X) is analogous in many ways to the ordinary Euler characteristic. One application is an intuitively satisfying formula for the Euler class (integer coefficients) of the normal bundle to a smooth circle action without fixed points on a manifold. In the special case of a 3-dimensional Seifert fibered space, this formula is particularly effective.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hochschild Homology and Global Dimension

We prove that for certain classes of graded algebras (Koszul, local, cellular), infinite global dimension implies that Hochschild homology does not vanish in high degrees, provided the characteristic of the ground field is zero. Our proof uses Igusa’s formula relating the Euler characteristic of relative cyclic homology to the graded Cartan determinant.

متن کامل

Heegaard Floer homology and fibred 3–manifolds

Given a closed 3–manifold Y , we show that the Heegaard Floer homology determines whether Y fibres over the circle with a fibre of negative Euler characteristic. This is an analogue of an earlier result about knots proved by Ghiggini and the author. AMS Classification 57R58, 57M27; 57R30.

متن کامل

Hochschild (co)homology of exterior algebras

The minimal projective bimodule resolutions of the exterior algebras are explicitly constructed. They are applied to calculate the Hochschild (co)homology of the exterior algebras. Thus the cyclic homology of the exterior algebras can be calculated in case the underlying field is of characteristic zero. Moreover, the Hochschild cohomology rings of the exterior algebras are determined by generat...

متن کامل

Holomorphic Disks and Knot Invariants

We define a Floer-homology invariant for knots in an oriented threemanifold, closely related to the Heegaard Floer homologies for three-manifolds defined in an earlier paper. We set up basic properties of these invariants, including an Euler characteristic calculation, and a description of the behaviour under connected sums. Then, we establish a relationship with HF for surgeries along the knot...

متن کامل

ar X iv : m at h / 05 04 35 2 v 1 [ m at h . R A ] 1 8 A pr 2 00 5 Hochschild ( co ) homology of exterior algebras 1

The minimal projective bimodule resolutions of the exterior algebras are explicitly constructed. They are applied to calculate the Hochschild (co)homology of the exterior algebras. Thus the cyclic homology of the exterior algebras can be calculated in case the underlying field is of characteristic zero. Moreover, the Hochschild cohomology rings of the exterior algebras are determined by generat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999